How do scientists use radioactive dating to determine the age of fossils

Love-hungry teenagers and archaeologists agree: But while the difficulties of single life may be intractable, the challenge of determining the age of prehistoric artifacts and fossils is greatly aided by measuring certain radioactive isotopes. Until this century, relative dating was the only technique for identifying the age of a truly ancient object. By examining the object's relation to layers of deposits in the area, and by comparing the object to others found at the site, archaeologists can estimate when the object arrived at the site.

What Is Half-Life?

Perhaps the most widely used evidence for the theory of evolution through natural selection is the fossil record. The fossil record may be incomplete and may never fully completed, but there are still many clues to evolution and how it happens within the fossil record. One way that helps scientists place fossils into the correct era on the geologic time scale is by using radiometric dating.

Also called absolute dating, scientists use the decay of radioactive elements within the fossils or the rocks around the fossils to determine the age of the organism that was preserved. This technique relies on the property of half-life. Half-life is defined as the time it takes for one-half of a radioactive element to decay into a daughter isotope. As radioactive isotopes of elements decay, they lose their radioactivity and become a brand new element known as a daughter isotope.

By measuring the ratio of the amount of the original radioactive element to the daughter isotope, scientists can determine how many half-lives the element has undergone and from there can figure out the absolute age of the sample. The half-lives of several radioactive isotopes are known and are used often to figure out the age of newly found fossils. Different isotopes have different half-lives and sometimes more than one present isotope can be used to get an even more specific age of a fossil.

Below is a chart of commonly used radiometric isotopes, their half-lives, and the daughter isotopes they decay into. Let's say you found a fossil you think to be a human skeleton. The best radioactive element to use to date human fossils is Carbon There are several reasons why, but the main reasons is that Carbon is a naturally occurring isotope in all forms of life and its half-life is about years, so we are able to use it to date more "recent" forms of life relative to the geologic time scale.

You would need to have access to scientific instruments at this point that could measure the amount of radioactivity in the sample, so off to the lab we go! Now it is time to put those math skills to good use. After two half-lives, another half of your leftover Carbon would have decayed into Nitrogen This is what your readout said, so your fossil has undergone two half-lives. Now that you know how many half-lives have passed for your fossil, you need to multiply your number of half-lives by how many years are in one half-life.

Your fossil is of an organism maybe human that died 11, years ago. Share Flipboard Email. Heather Scoville is a high school science teacher and writes science curriculum for online science courses. Updated January 27, Nitrogen Potassium 1. Argon Thorium 75, yrs. Radium Uranium , million yrs. Lead Uranium 4. Continue Reading. ThoughtCo uses cookies to provide you with a great user experience. By using ThoughtCo, you accept our.

Using relative and radiometric dating methods, geologists are able to answer the question: how old is this fossil? There are three general approaches that allow scientists to date geological Relative dating to determine the age of rocks and fossils . Most isotopes found on Earth are generally stable and do not change. These radioactive isotopes are unstable, decaying over time at a Scientists find the ratio of parent isotope to daughter isotope. isotope, they are able to find the age of the rock or fossil in question. isotopes that are used for dating rocks, artifacts and fossils. How to Calculate Subatomic Particles.

Radiometric dating , radioactive dating or radioisotope dating is a technique used to date materials such as rocks or carbon , in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. Together with stratigraphic principles , radiometric dating methods are used in geochronology to establish the geologic time scale.

Geologists often need to know the age of material that they find.

Radiometric dating of rocks and minerals using naturally occurring, long-lived radioactive isotopes is troublesome for young-earth creationists because the techniques have provided overwhelming evidence of the antiquity of the earth and life. Some so-called creation scientists have attempted to show that radiometric dating does not work on theoretical grounds for example, Arndts and Overn ; Gill but such attempts invariably have fatal flaws see Dalrymple ; York and Dalrymple

How do geologists use carbon dating to find the age of rocks?

The most widely known form of radiometric dating is carbon dating. This is what archaeologists use to determine the age of human-made artifacts. But carbon dating won't work on dinosaur bones. The half-life of carbon is only 5, years, so carbon dating is only effective on samples that are less than 50, years old. Dinosaur bones, on the other hand, are millions of years old -- some fossils are billions of years old.

Radiometric dating

When paleontologist Mary Schweitzer found soft tissue in a Tyrannosaurus rex fossil , her discovery raised an obvious question -- how the tissue could have survived so long? The bone was 68 million years old, and conventional wisdom about fossilization is that all soft tissue, from blood to brains , decomposes. Only hard parts, like bones and teeth, can become fossils. But for some people, the discovery raised a different question. How do scientists know the bones are really 68 million years old? Today's knowledge of fossil ages comes primarily from radiometric dating , also known as radioactive dating. Radiometric dating relies on the properties of isotopes. These are chemical elements, like carbon or uranium, that are identical except for one key feature -- the number of neutrons in their nucleus. Atoms may have an equal number of protons and neutrons. If, however, there are too many or too few neutrons, the atom is unstable, and it sheds particles until its nucleus reaches a stable state.

Many rocks and organisms contain radioactive isotopes, such as U and C

One of the most commonly used methods for determining the age of fossils is via radioactive dating a. Radioisotopes are alternative forms of an element that have the same number of protons but a different number of neutrons. There are three types of radioactive decay that can occur depending on the radioisotope involved:

How Do Scientists Determine the Age of Dinosaur Bones?

Perhaps the most widely used evidence for the theory of evolution through natural selection is the fossil record. The fossil record may be incomplete and may never fully completed, but there are still many clues to evolution and how it happens within the fossil record. One way that helps scientists place fossils into the correct era on the geologic time scale is by using radiometric dating. Also called absolute dating, scientists use the decay of radioactive elements within the fossils or the rocks around the fossils to determine the age of the organism that was preserved. This technique relies on the property of half-life. Half-life is defined as the time it takes for one-half of a radioactive element to decay into a daughter isotope. As radioactive isotopes of elements decay, they lose their radioactivity and become a brand new element known as a daughter isotope. By measuring the ratio of the amount of the original radioactive element to the daughter isotope, scientists can determine how many half-lives the element has undergone and from there can figure out the absolute age of the sample. The half-lives of several radioactive isotopes are known and are used often to figure out the age of newly found fossils. Different isotopes have different half-lives and sometimes more than one present isotope can be used to get an even more specific age of a fossil. Below is a chart of commonly used radiometric isotopes, their half-lives, and the daughter isotopes they decay into.

18.5D: Carbon Dating and Estimating Fossil Age

Geologist Ralph Harvey and historian Mott Greene explain the principles of radiometric dating and its application in determining the age of Earth. As the uranium in rocks decays, it emits subatomic particles and turns into lead at a constant rate. Measuring the uranium-to-lead ratios in the oldest rocks on Earth gave scientists an estimated age of the planet of 4. Segment from A Science Odyssey: View in:

Radiometric Dating Does Work!

July 10, Geologists do not use carbon-based radiometric dating to determine the age of rocks. Carbon dating only works for objects that are younger than about 50, years, and most rocks of interest are older than that. Carbon dating is used by archeologists to date trees, plants, and animal remains; as well as human artifacts made from wood and leather; because these items are generally younger than 50, years. Carbon is found in different forms in the environment — mainly in the stable form of carbon and the unstable form of carbon

What Is Half-Life?

Smith is known as the Father of English Geology. Oxford Library. Our understanding of the shape and pattern of the history of life depends on the accuracy of fossils and dating methods. Some critics, particularly religious fundamentalists, argue that neither fossils nor dating can be trusted, and that their interpretations are better. Other critics, perhaps more familiar with the data, question certain aspects of the quality of the fossil record and of its dating.

Dating Fossils – How Are Fossils Dated?

Despite seeming like a relatively stable place, the Earth's surface has changed dramatically over the past 4. Mountains have been built and eroded, continents and oceans have moved great distances, and the Earth has fluctuated from being extremely cold and almost completely covered with ice to being very warm and ice-free. These changes typically occur so slowly that they are barely detectable over the span of a human life, yet even at this instant, the Earth's surface is moving and changing. As these changes have occurred, organisms have evolved, and remnants of some have been preserved as fossils. A fossil can be studied to determine what kind of organism it represents, how the organism lived, and how it was preserved.

Carbon dating is used to determine the age of biological artifacts up to 50, years old. This technique is widely used on recent artifacts, but educators and students alike should note that this technique will not work on older fossils like those of the dinosaurs alleged to be millions of years old. This technique is not restricted to bones; it can also be used on cloth, wood and plant fibers. Carbon dating has been used successfully on the Dead Sea Scrolls, Minoan ruins and tombs of the pharaohs among other things. Carbon is a radioactive isotope of carbon. The half-life of carbon is approximately 5, years.

Creation v. Evolution: How Carbon Dating Works
Related publications